Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Exp Physiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500291

RESUMO

The muscle metaboreflex stimulates the elevation of arterial blood pressure, aiming to rectify the oxygen deficit by enhancing oxygen delivery to support muscle activity. Moreover, activating the muscle metaboreflex significantly increases cardiac output (CO) by increasing factors such as heart rate, ventricular contractility, preload, stroke volume and mobilization of central blood volume. Previous studies indicate that ageing and cardiovascular diseases modify the muscle metaboreflex during exercise, limiting the ability to increase CO during physical activity. Alongside reduced exercise capacity, the attenuated rise in CO due to abnormal muscle metaboreflex in these patients impedes the increase in cerebral blood flow during exercise. Considering that CO plays a pivotal role in regulating cerebral blood flow adequately during exercise, this occurrence might contribute to an elevated risk of cerebral diseases, and it could also, at least, reduce the effective role of exercise in preventing cerebral disease and dementia among elderly individuals and patients with cardiovascular conditions. Therefore, it is important to consider this phenomenon when optimizing the effectiveness of exercise rehabilitation in patients with cardiovascular disease to prevent cerebral diseases and dementia.

2.
J Physiol Sci ; 74(1): 19, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500058

RESUMO

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (- 6.2 ± 0.4 bursts/min at 40º) and females (- 6.5 ± 0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals.


Assuntos
Perna (Membro) , Músculo Esquelético , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Sistema Nervoso Simpático/fisiologia , Pressorreceptores , Extremidade Inferior , Pressão Sanguínea/fisiologia , Barorreflexo/fisiologia , Frequência Cardíaca
3.
Eur J Neurosci ; 59(5): 1016-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38275099

RESUMO

This study aimed to examine whether observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery (AOMI). Twelve young males performed motor imagery of motor tasks with different difficulties while observing the actions of an expert performer and an expert performer with a swapped face. Motor tasks included bilateral wrist dorsiflexion (EASY) and unilateral two-ball rotating motions (DIFF). During the AOMI of EASY and DIFF, single-pulse transcranial magnetic stimulation was delivered to the left primary motor cortex, and motor-evoked potentials (MEPs) were obtained from the extensor carpi ulnaris and first dorsal interosseous muscles of the right upper limb, respectively. Visual analogue scale (VAS) assessed the subjective similarity of the expert performer with the swapped face in the EASY and DIFF to the participants themselves. The MEP amplitude in DIFF was larger in the observation of the expert performer with the swapped face than that of the expert performer (P = 0.012); however, the corresponding difference was not observed in EASY (P = 1.000). The relative change in the MEP amplitude from observing the action of the expert performer to that of the expert performer with the swapped face was positively correlated with VAS only in DIFF (r = 0.644, P = 0.024). These results indicate that observing the action of an expert performer with the observer's face enhances corticospinal excitability during AOMI, depending on the task difficulty and subjective similarity between the expert performer being observed and the observer.


Assuntos
Imaginação , Córtex Motor , Masculino , Humanos , Imaginação/fisiologia , Músculo Esquelético/fisiologia , Mãos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Tratos Piramidais/fisiologia , Eletromiografia/métodos
4.
J Appl Physiol (1985) ; 136(3): 535-548, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153849

RESUMO

Exercise-induced increases in shear rate (SR) acutely improve peripheral endothelial function, but the presence of this mechanism in cerebral arteries remains unclear. Thus, we evaluated shear-mediated dilation of the internal carotid artery (ICA), which is an index of cerebrovascular endothelial function, before and after exercise. Shear-mediated dilation was measured with 30 s of hypercapnia in 16 young adults before and 10 min after 30 min of sitting rest (CON) or three cycling exercises on four separate days. The target exercise intensity was 80% of oxygen uptake at the ventilatory threshold. To manipulate the ICA SR during exercise, participants breathed spontaneously (ExSB, SR increase) or hyperventilated without (ExHV, no increase in SR) or with ([Formula: see text], restoration of SR increase) addition of CO2 to inspiratory air. Shear-mediated dilation was calculated as a percent increase in diameter from baseline. Doppler ultrasound measures ICA velocity and diameter. The CON trial revealed that 30 min of sitting did not alter shear-mediated dilation (4.34 ± 1.37% to 3.44 ± 1.23%, P = 0.052). ICA dilation after exercise compared with preexercise levels increased in the ExSB trial (3.32 ± 1.37% to 4.74 ± 1.84%, P < 0.01), remained unchanged in the ExHV trial (4.07 ± 1.55% to 3.21 ± 1.48%, P = 0.07), but was elevated in the [Formula: see text] trial (3.35 ± 1.15% to 4.33 ± 2.12%, P = 0.04). Our results indicate that exercise-induced increases in cerebral shear may play a crucial role in improving cerebrovascular endothelial function after acute exercise in young adults.NEW & NOTEWORTHY We found that 30-min cycling (target intensity was 80% of the ventilatory threshold) with increasing shear of the internal carotid artery (ICA) enhanced transient hypercapnia-induced shear-mediated dilation of the ICA, reflecting improved cerebrovascular endothelial function. This enhancement of ICA dilation was diminished by suppressing the exercise-induced increase in ICA shear via hyperventilation. Our results indicate that increases in cerebral shear may be a key stimulus for improving cerebrovascular endothelial function after exercise in young adults.


Assuntos
Hipercapnia , Vasodilatação , Humanos , Adulto Jovem , Dilatação/métodos , Velocidade do Fluxo Sanguíneo , Exercício Físico , Artéria Braquial , Fluxo Sanguíneo Regional
5.
Med Sci Sports Exerc ; 56(5): 927-932, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38115226

RESUMO

PURPOSE: We evaluated whether repeated high-intensity interval exercise (HIIE) influences plasma oxytocin (OT) concentration in healthy men, and, given that OT is mainly synthesized in the hypothalamus, we assessed the concentration difference between the arterial (OT ART ) versus the internal jugular venous OT concentration (OT IJV ). Additionally, we hypothesized that an increase in cerebral OT release and the circulating concentration would be augmented by repeated HIIE. METHODS: Fourteen healthy men (age = 24 ± 2 yr; mean ± SD) performed two identical bouts of HIIE. These HIIE bouts included a warm-up at 50%-60% maximal workload ( Wmax ) for 5 min followed by four bouts of exercise at 80%-90% Wmax for 4 min interspersed by exercise at 50%-60% Wmax for 3 min. The HIIE bouts were separated by 60 min of rest. OT was evaluated in blood through radial artery and internal jugular vein catheterization. RESULTS: Both HIIE bouts increased both OT ART (median [IQR], from 3.9 [3.4-5.4] to 5.3 [4.4-6.3] ng·mL -1 in the first HIIE, P < 0.01) and OT IJV (from 4.6 [3.4-4.8] to 5.9 [4.3-8.2] ng·mL -1 , P < 0.01), but OT ART-IJV was unaffected (from -0.24 [-1.16 to 1.08] to 0.04 [-0.88 to 0.78] ng·mL -1 , P = 1.00). The increased OT levels were similar in the first and second HIIE bouts (OT ARTP = 0.25, OT IJVP = 0.36). CONCLUSIONS: Despite no change in the cerebral OT release via the internal jugular vein, circulating OT increases during HIIE regardless of the accumulated exercise volume, indicating that OT may play role as one of the exerkines.


Assuntos
Treinamento Intervalado de Alta Intensidade , Exercício de Aquecimento , Masculino , Humanos , Adulto Jovem , Adulto , Ocitocina , Exercício Físico
6.
Exp Physiol ; 108(12): 1516-1530, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898979

RESUMO

Hypoxia has the potential to impair cognitive function; however, it is still uncertain which cognitive domains are adversely affected. We examined the effects of acute hypoxia (∼7 h) on central executive (Go/No-Go) and non-executive (memory) tasks and the extent to which impairment was potentially related to regional cerebral blood flow and oxygen delivery (CDO2 ). Twelve male participants performed cognitive tasks following 0, 2, 4 and 6 h of passive exposure to both normoxia and hypoxia (12% O2 ), in a randomized block cross-over single-blinded design. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities and corresponding CDO2 were determined using bilateral transcranial Doppler ultrasound. In hypoxia, MCA DO2 was reduced during the Go/No-Go task (P = 0.010 vs. normoxia, main effect), and PCA DO2 was attenuated during memorization (P = 0.005 vs. normoxia) and recall components (P = 0.002 vs. normoxia) in the memory task. The accuracy of the memory task was also impaired in hypoxia (P = 0.049 vs. normoxia). In contrast, hypoxia failed to alter reaction time (P = 0.19 vs. normoxia) or accuracy (P = 0.20 vs. normoxia) during the Go/No-Go task, indicating that selective attention and response inhibition were preserved. Hypoxia did not affect cerebral blood flow or corresponding CDO2 responses to cognitive activity (P > 0.05 vs. normoxia). Collectively, these findings highlight the differential sensitivity of cognitive domains, with memory being selectively vulnerable in hypoxia. NEW FINDINGS: What is the central question of this study? We sought to examine the effects of acute hypoxia on central executive (selective attention and response inhibition) and non-executive (memory) performance and the extent to which impairments are potentially related to reductions in regional cerebral blood flow and oxygen delivery. What is the main finding and its importance? Memory was impaired in acute hypoxia, and this was accompanied by a selective reduction in posterior cerebral artery oxygen delivery. In contrast, selective attention and response inhibition remained well preserved. These findings suggest that memory is selectively vulnerable to hypoxia.


Assuntos
Cognição , Hipóxia , Humanos , Masculino , Atenção , Circulação Cerebrovascular/fisiologia , Cognição/fisiologia , Oxigênio , Tempo de Reação
7.
Exp Physiol ; 108(10): 1337-1346, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37626473

RESUMO

Handgrip exercise (HG), a small muscle exercise, improves cognitive function and is expected to provide a useful exercise mode to maintain cerebral health. However, the effect of HG on cerebral blood flow regulation is not fully understood. The present study aimed to examine the effect of acute HG on cerebral endothelial function as one of the essential cerebral blood flow regulatory functions. Thirteen healthy young participants performed interval HG, consisting of 4 sets of 2 min HG at 25% of maximum voluntary contraction with 3 min recovery between each set. Cognitive performance was evaluated before and at 5 and 60 min after interval HG using the Go/No-Go task (reaction time and accuracy). The diameter and blood velocity of the internal carotid artery (ICA) were measured using a duplex Doppler ultrasound system. To assess cerebral endothelial function, hypercapnia (30 s of hypercapnia stimulation, end-tidal partial pressure of CO2 : +9 mmHg)-induced cerebrovascular flow-mediated dilatation (cFMD) was induced, calculated as relative peak dilatation from baseline diameter. The shear rate (SR) was calculated using the diameter and blood velocity of the ICA. As a result, cognitive performance improved only at 5 min after interval HG (reaction time, P = 0.008; accuracy, P = 0.186), whereas ICA SR during interval HG and cFMD after interval HG were unchanged (P = 0.313 and P = 0.440, respectively). These results suggest that enhancement in cerebral endothelial function is not an essential mechanism responsible for acute HG-induced cognitive improvement. NEW FINDINGS: What is the central question of this study? Does handgrip exercise, a small muscle exercise, improve cerebral endothelial function? What is the main finding and its importance? Acute interval isometric handgrip exercise (2 min of exercise at 25% maximum voluntary contraction, followed by 3 min of recovery, repeated for a total of 4 sets) did not improve cerebral endothelial function. Since the cerebrovascular shear rate did not change during exercise, it is possible that acute handgrip exercise is not sufficient stimulation to improve cerebral endothelial function.


Assuntos
Dióxido de Carbono , Artéria Carótida Interna , Humanos , Artéria Carótida Interna/fisiologia , Hipercapnia , Dilatação/métodos , Força da Mão/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 325(4): H665-H672, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565259

RESUMO

This study sought to determine to what extent acute exposure to microgravity (0 G) and related increases in central blood volume (CBV) during parabolic flight influence the regional redistribution of intra and extra cranial cerebral blood flow (CBF). Eleven healthy participants performed during two parabolic flights campaigns aboard the Airbus A310-ZERO G aircraft. The response of select variables for each of the 15 parabolas involving exposure to both 0 G and hypergravity (1.8 G) were assessed in the seated position. Mean arterial blood pressure (MAP) and heart rate (HR) were continuously monitored and used to calculate stroke volume (SV), cardiac output ([Formula: see text]), and systemic vascular resistance (SVR). Changes in CBV were measured using an impedance monitor. Extracranial flow through the internal carotid, external carotid, and vertebral artery ([Formula: see text]ICA, [Formula: see text]ECA, and [Formula: see text]VA), and intracranial blood velocity was measured by duplex ultrasound. When compared with 1-G baseline condition, 0 G increased CBV (+375 ± 98 mL, P = 0.004) and [Formula: see text] (+16 ± 14%, P = 0.024) and decreased SVR (-7.3 ± 5 mmHg·min·L-1, P = 0.002) and MAP (-13 ± 4 mmHg, P = 0.001). [Formula: see text]ECA increased by 43 ± 46% in 0 G (P = 0.030), whereas no change was observed for CBF, [Formula: see text]ICA, or [Formula: see text]VA (P = 0.102, P = 0.637, and P = 0.095, respectively).NEW & NOTEWORTHY Our findings demonstrate that in microgravity there is a selective increase in external carotid artery blood flow whereas global and regional cerebral blood flow remained preserved. To what extent this reflects an adaptive, neuroprotective response to counter overperfusion remains to be established.


Assuntos
Artéria Carótida Externa , Ausência de Peso , Humanos , Artéria Carótida Externa/diagnóstico por imagem , Artéria Carótida Externa/fisiologia , Hemodinâmica , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Volume Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
9.
Exp Physiol ; 108(8): 1057-1065, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37309084

RESUMO

NEW FINDINGS: What is the central question of this study? High-intensity interval exercise (HIIE) is recommended for its favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may stress the brain: is the cerebral vasculature protected against exaggerated systemic blood flow fluctuation during HIIE? What is the main finding and its importance? Time- and frequency-domain indices of aortic-cerebral pulsatile transition were lowered during HIIE. The findings suggest that the arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature. ABSTRACT: High-intensity interval exercise (HIIE) is recommended because it provides favourable haemodynamic stimulation, but excessive haemodynamic fluctuations may be an adverse impact on the brain. We tested whether the cerebral vasculature is protected against systemic blood flow fluctuation during HIIE. Fourteen healthy men (age 24 ± 2 years) underwent four 4-min exercises at 80-90% of maximal workload (Wmax ) interspaced by 3-min active rest at 50-60% Wmax . Transcranial Doppler measured middle cerebral artery blood velocity (CBV). Systemic haemodynamics (Modelflow) and aortic pressure (AoP, general transfer function) were estimated from an invasively recorded brachial arterial pressure waveform. Using transfer function analysis, gain and phase between AoP and CBV (0.39-10.0 Hz) were calculated. Stroke volume, aortic pulse pressure and pulsatile CBV increased during exercise (time effect: P < 0.0001 for all), but a time-domain index of aortic-cerebral pulsatile transition (pulsatile CBV/pulsatile AoP) decreased throughout the exercise bouts (time effect: P < 0.0001). Furthermore, transfer function gain reduced, and phase increased throughout the exercise bouts (time effect: P < 0.0001 for both), suggesting the attenuation and delay of pulsatile transition. The cerebral vascular conductance index (mean CBV/mean arterial pressure; time effect: P = 0.296), an inverse index of cerebral vascular tone, did not change even though systemic vascular conductance increased during exercise (time effect: P < 0.0001). The arterial system to the cerebral vasculature may attenuate pulsatile transition during HIIE as a defence mechanism against pulsatile fluctuation for the cerebral vasculature.


Assuntos
Pressão Arterial , Hemodinâmica , Masculino , Humanos , Adulto Jovem , Adulto , Hemodinâmica/fisiologia , Pressão Arterial/fisiologia , Exercício Físico/fisiologia , Ultrassonografia Doppler Transcraniana , Volume Sistólico/fisiologia , Pressão Sanguínea/fisiologia
10.
Neurosci Lett ; 808: 137293, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37169163

RESUMO

This study aimed to clarify the changes in short-interval intracortical inhibition (SICI) and facilitation (ICF) in the ipsilateral primary motor cortex (iM1) when the task difficulty during unilateral force-matching tasks was manipulated. Twelve young male adults matched their left index finger abduction force to a displayed target force. Task difficulty was manipulated by varying the acceptable force range of the mean target force (5% MVC). Briefly, unilateral force-matching tasks with lesser and greater task difficulty (EASY and DIFF, respectively) were assigned acceptable force ranges of ± 7% and ± 0% of the target force, respectively. To evaluate SICI and ICF in iM1, paired-pulse transcranial magnetic stimulation with 2-ms and 10-ms interstimulus intervals was applied to correct motor-evoked potentials (MEPs) from the first dorsal interosseous muscle during each task. Test stimulus intensity to evoke the MEP with a peak-to-peak amplitude of approximately 0.5-1.5 mV for each task was lower in DIFF than in EASY (P = 0.001), indicating that DIFF increased corticospinal excitability of the ipsilateral hemisphere compared with EASY. The MEPs in SICI and ICF were significantly larger in DIFF than in EASY (P < 0.050). These results suggest that greater corticospinal excitability in the ipsilateral hemisphere during DIFF is associated with reduced SICI and increased ICF.


Assuntos
Córtex Motor , Adulto , Humanos , Masculino , Eletromiografia/métodos , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Dedos , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Músculo Esquelético/fisiologia
11.
J Clin Med ; 12(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37109380

RESUMO

Arterial stiffness is a disease of the arterial media, and it is well known that it is accelerated by aging [...].

12.
J Clin Med ; 12(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983441

RESUMO

The present study aimed to examine the validity of a novel method to assess cerebrovascular carbon dioxide (CO2) reactivity (CVR) that does not require a CO2 inhalation challenge, e.g., for use in patients with respiratory disease or the elderly, etc. In twenty-one healthy participants, CVR responses to orthostatic stress (50° head-up tilt, HUT) were assessed using two methods: (1) the traditional CO2 inhalation method, and (2) transfer function analysis (TFA) between middle cerebral artery blood velocity (MCA V) and predicted arterial partial pressure of CO2 (PaCO2) during spontaneous respiration. During HUT, MCA V steady-state (i.e., magnitude) and MCA V onset (i.e., time constant) responses to CO2 inhalation were decreased (p < 0.001) and increased (p = 0.001), respectively, indicative of attenuated CVR. In contrast, TFA gain in the very low-frequency range (VLF, 0.005-0.024 Hz) was unchanged, while the TFA phase in the VLF approached zero during HUT (-0.38 ± 0.59 vs. 0.31 ± 0.78 radians, supine vs. HUT; p = 0.003), indicative of a shorter time (i.e., improved) response of CVR. These findings indicate that CVR metrics determined by TFA without a CO2 inhalation do not track HUT-evoked reductions in CVR identified using CO2 inhalation, suggesting that enhanced cerebral blood flow response to a change in CO2 using CO2 inhalation is necessary to assess CVR adequately.

13.
J Cereb Blood Flow Metab ; 43(4): 610-612, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36704820

RESUMO

Exercise is a beneficial intervention to prevent cognitive dysfunction. However, an optimal exercise prescription for preventing dementia has not been established because the physiological mechanism(s) of exercise-induced improvements in cognitive function remains unclear. Interestingly, our recent study demonstrated that individuals with a higher exercise pressor response exhibit less exercise-induced cognitive improvement, suggesting that individual differences in cardiovascular responses to exercise or its associated physiological factors, may be related to exercise-induced alterations in cognitive function. Therefore, consideration of individual cardiovascular responses is warranted to develop appropriate exercise prescriptions for a given individual to prevent cognitive dysfunction.


Assuntos
Pressão Arterial , Disfunção Cognitiva , Humanos , Cognição , Disfunção Cognitiva/prevenção & controle , Exercício Físico , Vasoconstritores , Pressão Sanguínea , Reflexo , Músculo Esquelético , Contração Muscular
15.
J Cereb Blood Flow Metab ; 43(1): 3-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35962478

RESUMO

Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.


Assuntos
Encéfalo , Reprodutibilidade dos Testes , Encéfalo/irrigação sanguínea
16.
Eur J Appl Physiol ; 123(4): 781-796, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36454281

RESUMO

Excessive arterial pressure elevation induced by resistance exercise (RE) attenuates peripheral vasodilatory function, but its effect on cerebrovascular function is unknown. We aimed to evaluate the effect of different pressor responses to RE on hypercapnia-induced vasodilation of the internal carotid artery (ICA), an index of cerebrovascular function. To manipulate pressor responses to RE, 15 healthy young adults (11M/4F) performed two RE: high intensity with low repetitions (HL) and low intensity with high repetitions (LH) dynamic knee extension. ICA dilation, induced by 3 min of hypercapnia, was measured before and 10 min after RE using Doppler ultrasound. HL exercise elicited a greater pressor response than LH exercise. In relaxation phases of RE, ICA blood velocity increased in both HL and LH trials. However, ICA shear rate did not significantly increase in either trial (P = 0.06). Consequently, neither exercise altered post-exercise hypercapnia-induced ICA dilation (HL, 3.9 ± 1.9% to 5.1 ± 1.7%; LH, 4.6 ± 1.4% to 4.8 ± 1.8%; P > 0.05 for all). When viewed individually, the changes in ICA shear rate were positively correlated with changes in end-tidal partial pressure of carbon dioxide (PETCO2) (r = 0.46, P < 0.01) than with mean arterial pressure (r = 0.32, P = 0.02). These findings suggest that the effects of RE-induced pressor response on cerebrovascular function may be different from peripheral arteries. An increase in PETCO2 during the relaxation phase may play a more crucial role than elevated pressure in increasing cerebral shear during dynamic RE.


Assuntos
Hipercapnia , Treinamento de Força , Humanos , Adulto Jovem , Dióxido de Carbono , Artéria Carótida Interna/fisiologia , Vasodilatação/fisiologia , Circulação Cerebrovascular/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia
17.
Transl Sports Med ; 2023: 5516439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38654921

RESUMO

Recently, there has been a growing focus on studies related to women's football. However, the cognitive function of female football players has not been extensively characterized. Thus, we explored how the cognitive function of female football players was altered during a series of matches in summer and examined day-to-day variations in cognitive function with regard to dehydration status. Resting cognitive function was assessed from 17 young women football players during the Japan Club Youth Women's football tournament, which spanned eight consecutive days. Cognitive function initially improved, with this improvement sustained throughout the tournament. It is worth noting that ten participants experienced symptoms of dehydration at least once during the tournament; however, these symptoms were not found to be linked to impaired cognitive function, suggesting that resting cognitive function remains unaffected during summer matches, even in the presence of dehydration symptoms.

18.
J Clin Med ; 11(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36294364

RESUMO

Many previous studies indicate that heart failure (HF) increases the risk of cognitive dysfunction and stroke, showing the logic that several physiological factors associated with cardiac dysfunctions affect homeostasis in the cerebral circulation. In the chronic process of HF patients, it is suggested that reduced cerebral blood flow (CBF) and abnormal auto-regulation might result in impaired perfusion, metabolic insufficiency, and regional or global structural deteriorations in the brain. However, the mechanism underlying HF-induced brain disease remains unclear. Cardiac dysfunction in patients with HF or HF-induced several physiological abnormalities may cause brain dysfunction. Possible physiological factors should be considered for future studies to prevent brain disease as well as cardiovascular dysfunction in patients with HF.

19.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R581-R588, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094450

RESUMO

Compared with younger adults, passive heating induced increases in cardiac output are attenuated by ∼50% in older adults. This attenuated response may be associated with older individuals' inability to maintain stroke volume through ionotropic mechanisms and/or through altered chronotropic mechanisms. The purpose of this study was to identify the interactive effect of age and hyperthermia on cardiac responsiveness to dobutamine-induced cardiac stimulation. Eleven young (26 ± 4 yr) and 8 older (68 ± 5 yr) participants underwent a normothermic and a hyperthermic (baseline core temperature +1.2°C) trial on the same day. In both thermal conditions, after baseline measurements, intravenous dobutamine was administered for 12 min at 5 µg/kg/min, followed by 12 min at 15 µg/kg/min. Primary measurements included echocardiography-based assessments of cardiac function, gastrointestinal and skin temperatures, heart rate, and mean arterial pressure. Heart rate responses to dobutamine were similar between groups in both thermal conditions (P > 0.05). The peak systolic mitral annular velocity (S'), i.e., an index of left ventricular longitudinal systolic function, was similar between groups for both thermal conditions at baseline. While normothermic, the increase in S' between groups was similar with dobutamine administration. However, while hyperthermic, the increase in S' was attenuated in the older participants with dobutamine (P < 0.001). Healthy, older individuals show attenuated inotropic, but maintained chronotropic responsiveness to dobutamine administration during hyperthermia. These data suggest that older individuals have a reduced capacity to increase cardiomyocyte contractility, estimated by changes in S', via ß1-adrenergic mechanisms while hyperthermic.


Assuntos
Dobutamina , Hipertermia Induzida , Adrenérgicos/farmacologia , Idoso , Débito Cardíaco , Dobutamina/farmacologia , Frequência Cardíaca/fisiologia , Humanos , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
20.
J Physiol Sci ; 72(1): 16, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858836

RESUMO

Emergent evidence suggests that cyclic intermittent hypoxia increases cerebral arterial shear rate and endothelial function, whereas continuous exposure decreases anterior cerebral oxygen (O2) delivery. To examine to what extent continuous hypoxia impacts cerebral shear rate, cerebral endothelial function, and consequent cerebral O2 delivery (CDO2), eight healthy males were randomly assigned single-blind to 7 h passive exposure to both normoxia (21% O2) and hypoxia (12% O2). Blood flow in the brachial and internal carotid arteries were determined using Duplex ultrasound and included the combined assessment of systemic and cerebral endothelium-dependent flow-mediated dilatation. Systemic (brachial artery) flow-mediated dilatation was consistently lower during hypoxia (P = 0.013 vs. normoxia), whereas cerebral flow-mediated dilation remained preserved (P = 0.927 vs. normoxia) despite a reduction in internal carotid artery antegrade shear rate (P = 0.002 vs. normoxia) and CDO2 (P < 0.001 vs. normoxia). Collectively, these findings indicate that the reduction in CDO2 appears to be independent of cerebral endothelial function and contrasts with that observed during cyclic intermittent hypoxia, highlighting the regulatory importance of (hypoxia) dose duration and flow/shear rate phenotype.


Assuntos
Hipóxia , Vasodilatação , Dilatação , Humanos , Masculino , Oxigênio , Fenótipo , Método Simples-Cego , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...